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Responses to Heteroskedasticity, Continued

Response Two: Weighted Least Squares

Under heteroskedasticity, the BLUE estimator of β is a method that adjusts observations for the
variances of the error term. Therefore, our regression estimates will have less variance if we weight
observations by the variance of the error term called generalized least squares (GLS). Suppose our
model is of the following form, where εi is a random independent variable with variance 1, and
where

√
hi is a term that varies across observations i.

V ariableName1 = β0 + β1V ariableName2 +
√
hiσ · ε

Note that:

V (V ariableName1|V ariableName2) =V (β0 + β1V ariableName2 +
√
hiσ · ε|V ariableName2)

=V (
√
hiσ · ε|V ariableName2)

=hiσ
2V (ε|V ariableName2)

=hiσ
2

Hence the hiσ
2 values determine the way in which variances of the error term differ across

observations. Now, consider reweighting the data by the square root of this variance. Then:

V ariableName1√
hiσ

= β0
1√
hiσ

+ β1
V ariableName2√

hiσ
+ ε

1



Note that weighting by
√
hiσ returns the error term to a homoskedastic error, as the error term

now has constant variance across all observations. Then, if we estimated a regression for this model
using OLS with these reweighted data, we would then have estimates that are BLUE. GLS works
then by reweighting the data by the standard deviation of the error term for each observation and
then applying OLS to the new data.

The question then naturally becomes how we determine σ2hi. When our data are averages
and we have the number of observations in each average, our σ2hi is in fact just the number of
observations in each group., q. Consider a data generating process where V ariableName1 is a
linear function of V ariableName2 and an error term. Then:

V ariableName1 =β0 + β1V ariableName2 + ε
q∑
i=1

V ariableName1 =

q∑
i=1

β0 +

q∑
i=1

β1V ariableName2 +

q∑
i=1

ε∑q
i=1 V ariableName1

q
=

∑q
i=1 β0
q

+

∑q
i=1 β1V ariableName2

q
+

∑q
i=1 ε

q

If we only observe these averages across groups of size q (which is more common than you might
think - e.g. average performance across schools). Suppose we are in a homoskedastic world in the
original model. Then consider the variance of the error term here:

V (

∑q
i=1 V ariableName1

q
|
∑q

i=1 β1V ariableName2

q
) =V (

∑q
i=1 ε

q
|
∑q

i=1 β1V ariableName2

q
)

=
1

q2
V (

q∑
i=1

ε|
∑q

i=1 β1V ariableName2

q
)

=
1

q
V (ε|

∑q
i=1 β1V ariableName2

q
)

=
σ2ε
q

Note that the error term here is heteroskedastic across observations, as it depends on the
number of observations in each group. Hence, estimating the relationship between means using
OLS is inefficient. Note that if we reweight the data by

√
q, then we return to a homoskedastic

error:

√
q

∑q
i=1 V ariableName1

q
=
√
q

∑q
i=1 β0
q

+
√
q

∑q
i=1 β1V ariableName2

q
+
√
q

∑q
i=1 ε

q∑q
i=1 V ariableName1√

q
=

∑q
i=1 β0√
q

+

∑q
i=1 β1V ariableName2√

q
+

∑q
i=1 ε√
q
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Where:

V (

∑q
i=1 V ariableName1√

q
|
∑q

i=1 β1V ariableName2√
q

) =V (

∑q
i=1 ε√
q
|
∑q

i=1 β1V ariableName2√
q

)

=V (ε|
∑q

i=1 β1V ariableName2

q
)

=σ2ε

Hence, when we have averages and homoskedastic errors in the underlying data process, reweight-
ing the data by the square root of the number of observations in each group makes the estimation
of the coefficients from the original model efficient.

The question becomes then what we do when we don’t know this variance, which is usually the
case. If ε is continuous, then one way of determining the variance of the error term would be to
make a functional form assumption about the structure of σ2hi. We will assume that the variance
of the error term, σ2hi is exactly:

V (ψi|V ariableName2) = σ2hi =σ2eγ0+γ1V ariableName2δi

ln(V (ψi|V ariableName2)) = ln(σ2) + γ0 + γ1V ariableName2 + ln(δi)

ln(V (ψi|V ariableName2)) =(ln(σ2) + γ0 + E[ln(δi)]) + γ1V ariableName2 + ln(δi)− E[ln(δi)]

ln(V (ψi|V ariableName2)) =γNew0 + γ1V ariableName2 + εi

Where εi = ln(δi)− E[ln(δi)] and γNew0 = ln(σ2) + γ0 + E[ln(δi)].

Note that we can consistently estimate this relationship, assuming that E[εi|V ariableName2] =
0, by taking the squared residuals from a regression and regressing the log of those squared residuals
on the covariates X. Then, if we take the predicted values of these regressions and then put them
in an exponent we have a consistent estimator of the expected value of σ2hi. Finally, then we use
these values and reweight our data for feasible generalized least squares (FGLS) estimate. Note
that this estimate, since we need to estimate the relationship and do not have the true variances
as in GLS, will likely be biased but, as noted before, it will be consistent and have asymptotically
lower variance than OLS. Thus, FGLS is ’more efficient’ than OLS.

Thus, the process for implementing FGLS in a regression of V ariableName1 on V ariableName2
would be:

1. Regress V ariableName1 on V ariableName2

2. Take residuals from the regression, square them, and lastly take a log of them. Save the new
values as lnsqresid.

3. Regress the log squared residuals in lnsqresid on V ariableName2

3



4. Pull the predicted values from the last regression in step 3, and take an exponent of them: eŷ

5. Take a reciprocal of the values created in step 4 and save as a new variable as inversevarhat.

6. Regress V ariableName1 on V ariableName2 using inversevarhat created in step 5 as an
inverse variance weight.

Let’s say we wanted to estimate a regression of V ariableName1 on V ariableName2 using FGLS
in STATA:

regress VariableName1 VariableName2

predict residuals, resid

generate residualssq =residuals*residuals

generate lnresidualssq=log(residualssq)

regress lnresidualssq VariableName2

predict lnresidualssq, xb

generate variancehat=exp(lnresidualssq)

generate inversevarhat=1/variancehat

regress VariableName1 VariableName2 [aweight= inversevarhat]

The aweight option performs the weighting operation we did above, where we divide all
components of the regression by the square root of the estimated variance. Here’s how we would
do the same regression long-hand without using the aweight option:

regress VariableName1 VariableName2

predict residuals, resid

generate residualssq =residuals*residuals

generate lnresidualssq=log(residualssq)

regress lnresidualssq VariableName2

predict lnresidualssq, xb

generate variancehat=exp(lnresidualssq)

generate inversevarhat=1/variancehat
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generate inversevarhatsqrt=(1/variancehat)∧1/2

generate VariableName1new=VariableName1*inversevarhatsqrt

generate VariableName2new=VariableName2*inversevarhatsqrt

generate constantnew = 1*inversevarhatsqrt

regress VariableName1new VariableName2new constantnew, noconstant

Note that we need to create a new constant term for our regression and specify the noconstant
option.

Now, suppose that our data come from a linear probability model where V ariableName1 is
equal to either 1 or 0 and V ariableName1 = β0 + β1V ariableName2 + ε. Suppose furthermore
that V ariableName2 is at some value. Note that if V ariableName1 = 1 then ε takes on value
1 − (β0 + β1V ariableName2) and if V ariableName1 = 0 then ε = −β0 − β1V ariableName2.
Note then for any given value of V ariableName2 then ε can only take on two values. Hence,
our previous estimation procedure, where we essentially assumed that the error term was from a
continuous distribution, doesn’t work.

However, we can derive the variance of V ariableName1 by using facts about the linear proba-
bility model. First, note that V ariableName1 is a discrete random variable that takes on values 0
or 1. Hence:

E[V ariableName1|V ariableName2]

=0 · P (V ariableName1 = 0|V ariableName2) + 1 · P (V ariableName1 = 1|V ariableName2)

=P (V ariableName1 = 1|V ariableName2)

And note furthermore that E[V ariableName1|V ariableName2] = β0 + β1V ariableName2.
Therefore:

P (V ariableName1 = 1|V ariableName2) = β0 + β1V ariableName2

ε takes on value 1−(β0+β1V ariableName2) when V ariableName1 = 1, and hence takes on this
value with the probability that V ariableName1 = 1, and ε takes on value −β0−β1V ariableName2
when V ariableName1 = 0 and hence takes on this value with the probability that V ariableName1 =
0. Therefore:
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V (ε|V ariableName2) = E[ε2|V ariableName2]− E[ε|V ariableName2]2

=(ε1)
2 · P (V ariableName1 = 1|V ariableName2) + (ε0)

2 · P (V ariableName1 = 0|V ariableName2)−(
ε1 · P (V ariableName1 = 1|V ariableName2) + ε0 · P (V ariableName1 = 0|V ariableName2)

)
=(1− (β0 + β1V ariableName2))2 · (β0 + β1V ariableName2)+

(−β0 − β1V ariableName2)2 · (1− (β0 + β1V ariableName2))−
((1− (β0 + β1V ariableName2)) · (β0 + β1V ariableName2)+

(−β0 − β1V ariableName2)(((1− (β0 + β1V ariableName2))))

=(1− β0 − β1V ariableName2)(β0 + β1V ariableName2)

=P (V ariableName1 = 1|V ariableName2) · (1− P (V ariableName1 = 1|V ariableName2))

For an example, assume that β0 + β1V ariableName2 = .3. Then:

V [ε|V ariableName2] = E[ε2|V ariableName2]− E[ε|V ariableName2]2

= 0.3 · (0.7)2 + 0.7 · (−0.3)2 − (0.3 · 0.7− 0.7 · 0.3)

= 0.3 · (0.7)2 + 0.7 · (−0.3)2 = .21

Note then that a natural estimator for the variance of the error term in the linear probability
model case would be:

V [ε|V ariableName2]

=P (V ariableName1 = 1|V ariableName2) · (1− P (V ariableName1 = 1|V ariableName2))

≈P̂ (V ariableName1 = 1|V ariableName2) · (1− P̂ (V ariableName1 = 1|V ariableName2))

≈P̂ (V ariableName1 = 1|V ariableName2) · (1− P̂ (V ariableName1 = 1|V ariableName2))

≈ ̂V ariableName1 · (1− ̂V ariableName1)

This fact then suggests a similar procedure to what we did above for implementing FGLS
with data from a linear probability model where V ariableName1 is our dependent variable and
V ariableName2 is our independent variable.

1. Regress V ariableName1 on V ariableName2.

2. Take predicted values from the regression and save in a new variable probabilityhat.

3. Create a new variable varhat by multiplying probabilityhat by 1− probabilityhat.

4. Take a reciprocal of the values created in step 3 and save as a new variable as inversevarhat.
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5. Regress V ariableName1 on V ariableName2 using inversevarhat created in step 5 as an
inverse variance weight.

In STATA, we would implement this procedure as follows

regress VariableName1 VariableName2

predict probabilityhat, xb

generate varhat = (probabilityhat)*(1-probabilityhat

generate inversevarhat=1/varhat

regress VariableName1 VariableName2 [aweight=inversevarhat]

Specification Tests

While we have generally assumed that we have specified the ’correct’ model, it may be that that
we have used the wrong model, implying that the current model we assume is misspecified. We
will consider two possible tests, the Ramsey RESET test and the Davidson-McKinnen test.

Ramsey RESET Test

The Ramsey RESET test works by including powers of the fitted predicted values from a regression
as covariates. If we have ’correctly’ specified the regression, then including the predicted values
from the ’correctly’ specified regression squared or taken to the third power should not matter.
Then, if we include these fitted values taken to various powers in the true model, we can use an
F-test to test the null hypothesis that the coefficients on these fitted values should be 0. Note that
this test is flexible in the alternate specifications it might possibly describe, but rejecting the null
hypothesis here of ’correct’ specification does not point the way to a different specification as there
is no clear alternative hypothesis implied by this form of a test. Hence, it is not clear what the
power of this test is.

Suppose we are regressing V ariableName1 on V ariableName2. Then we would implement this
test by typing:

regress VariableName1 VariableName2

predict predicted1, xb

generate predicted2=predicted∧2

generate predicted3=predicted∧3
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regress VariableName1 VariableName2 predicted2 predicted3

test (predicted2=0) (predicted3=0)

Note that STATA’s hard coded version of this test estat ovtest uses four powers of the
predicted values instead of three.

Davidson-McKinnen Test

As noted previously, the RESET test does not test against a definitive alternative hypothesis and
if a rejection occurs, simply implies that the model is missing something - either omitted variables,
missing squares of variables, different functions of the variables, etc.. The Davidson-McKinnen test
offers more actionable results because it compares specific models with each other. Let’s say we are
considering regressions that relate V ariableName1 to V ariableName2 and we want to compare
the two models to each other:

V ariableName1Model1 = β0 + β1V ariableName2 + ε

V ariableName1Model2 = η0 + η1 ln(V ariableName2) + ε

We estimate these two models separately and produce fitted values of ̂V ariableName1. We
then add in the fitted values from each model into the regressions we estimate for the other model:

V ariableName1Model1 = β0 + β1V ariableName2 + β2 ̂V ariableName1Model2 + ε

V ariableName1Model2 = η0 + η1 ln(V ariableName2) + η2 ̂V ariableName1Model1 + ε

We then test separately the null hypotheses that β2 = 0 and η2 = 0. There are four possible
outcomes:

1. Fail to reject β2 = 0, reject η2 = 0: The second model seems to fit better than the first.

2. Reject β2 = 0, fail to reject η2 = 0: The first model seems to fit better than the first.

3. Reject both β2 = 0 and η2 = 0: Both models seem to perform badly and we should try other
models.

4. Fail to reject both β2 = 0 and η2 = 0: Both models seem to work well, and we should use
some other criteria for comparing the two models to each other

In STATA, we would implement this test in regressing V ariableName1 on V ariableName2 as
follows;
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regress VariableName1 VariableName2

predict Model1Predicted, xb

generate lnVariableName2 = log(VariableName2)

regress VariableName1 lnVariableName2

predict Model2Predicted, xb

regress VariableName1 VariableName2 Model2Predicted

test (Model2Predicted=0)

regress VariableName1 lnVariableName2 Model1Predicted

test (Model1Predicted=0)

Measurement Error

We usually cannot detect measurement error in a dataset by itself, although we can measure
how it is expressed in our data by looking at ’validation’ studies where we compare results from
administrative datasets with survey data. Measurement error can either occur in the dependent
variable or in the independent variable.

Error in the Dependent Variable

Suppose our true model is:

V ariableName1∗ = β0 + β1V ariableName2
∗ + ε

But suppose we only observe a measurement of V ariableName1∗ with error: V ariableName1 =
V ariableName1∗ + η where the η error term is iid. Note if we regress V ariableName1 on
V ariableName2∗, then the plim of β̂1 would be:
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plim(β1) =
cov(V ariableName1, V ariableName2∗)

V (V ariableName2∗)

=
cov(V ariableName1∗ + η, V ariableName2∗)

V (V ariableName2∗)

=
cov(V ariableName1∗, V ariableName2∗)

V (V ariableName2∗)

= β1

And

V (β1) =
σ2η + σ2ε∑n

i=1(x
∗
i − x̄∗)2

Hence, β̂ using the error-laden variable is unbiased and consistent, but the error just increases
the variance of the error term.

Error in the Independent Variable

Suppose now that we are regression the exact value of V ariableName1∗ on V ariableName2 where
V ariableName2 = V ariableName2∗ + η and where the error term is iid. Now, if we regress
V ariableName1∗ on V ariableName2 then theplim of β̂1 would be:

plim(β̂1) =
cov(V ariableName1∗, V ariableName2)

V (V ariableName2)

= β1
V (V ariableName2∗)

V (V ariableName2∗) + V (η)

plim(β1) =
cov(V ariableName1∗, V ariableName2)

V (V ariableName2)

=
β1V (V ariableName2∗)

V (V ariableName2∗) + V (η)

= β1
V (V ariableName2∗)

V (V ariableName2∗) + V (η)

Note that the numerator is necessarily less than the denominator so the probability limit is
necessarily less than the true value of β1.
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