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An Aside on Unbiasedness and Consistency

NOTE: This material is meant to elaborate on what was discussed in class and is
completely optional.

We have learned in class that assuming that MLR1-4 hold (especially the assumption that the
error term is conditionally mean independent of X, or, E[ε|X] = 0) ensures that the OLS is both
unbiased and consistent. Note that we do not assume normal errors or even homoskedasticity for
this conclusion to hold. It can be hard to appreciate what is meant by consistency and unbiasedness.

Unbiasedness, technically, means that:

E[β̂j ] = βj

For all j. We interpret this claim as meaning that, if we were able to repeatedly sample data with
different observations but the same sample size as the data we are working with, then on average
the estimated β̂j values would be equal to the true βj value.

To appreciate what this means, let’s consider what we call a Monte Carlo simulation in econo-
metrics, or a setting where we simulate data and then look at the performance of an estimator.
Since we know how the data is constructed, we know what the true values of different parameters
is. Below, I have repeatedly created data from the following data generating process:

y = 2x+ 1 + ε

Where ε ∼ N(0, 1) and x ∼ N(0, 1). Note that, by construction, ε is independent of x, so
E[ε|X] = 0, and OLS is unbiased and consistent. So, I draw data from this data generating process
repeatedly, and then estimate a model of the following form:

y = β1x+ β0 + ε
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First, let’s consider a graph of outcomes. Figure 1 is a graph that on the horizontal axis
measures the number of observations in the dataset (or, n) and on the vertical axis measures the
mean β̂1 over 1000 different datasets drawn with the same number of observations. Now, note in
particular that the average β̂1 is almost precisely the true value of β1, or 2, and the pattern doesn’t
seem to vary with n.

Figure 1: Unbiasedness of β̂1 (Average Over 1000 Repetitions)
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Figure 2 reports a similar graph (with similar axes) for β̂0. Note that the average β̂0 is also
almost precisely the true value of β0 or 1, with the pattern again seemingly unrelated to n.
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Figure 2: Unbiasedness of β̂0 (Average Over 1000 Repetitions)
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In both of these figures, given that we have only run 1000 simulated datasets and not an infinitely
large one, it’s not surprising that there is some slight variation in the average β̂ values, but the
averages are strikingly close for all values of n. This pattern is a direct result of the unbiasedness
of β̂ in OLS given conditional mean independence of the error term.

Now, let’s consider a clearly biased estimator. For example we could consider an estimator
β̂1 + 1√

n
. Given that β̂1 is unbiased in OLS, this estimator will have bias 1√

n
. This estimator is

graphed in Figure 3.
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Figure 3: Biased Estimator of β̂1 (Average Over 1000 Repetitions)
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Now we see a clear bias on average, but it seems to attenuate as n grows larger.

Let’s consider another biased estimator. It turns out that se(β̂j) is actually a biased estimator

of sd(β̂j) in OLS. Remember that:

se(β̂j) =

√
σ̂2∑n

i=1(xi − x̄)

sd(β̂j) =

√
σ2∑n

i=1(xi − x̄)

Note that the only difference between the two is that the standard error has an estimated
variance of the error term, while the standard deviation does not.1 Figure 4 is a graph of the
estimated standard error with the true standard deviation, which we know because we know the
true variance of the error term.

1It is worthwhile to note that σ̂2∑n
i=1(xi−x̄)

is an unbiased estimator of σ2∑n
i=1(xi−x̄)

, or the estimated variance of β̂ is

an unbiased estimator of the true variance of β̂. Remember that nonlinear functions of unbiased estimators are not
usually themselves unbiased.

4



Figure 4: Standard Error and Standard Deviation of β̂1 (Average Over 1000 Repetitions)
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As with Figure 3 above, however, the bias seems to shrink as sample size increases. The bias
seems to vanish in both of these estimates because they are both consistent.

Consistency

Consistency is a different property than unbiasedness. You can have estimators that are biased but
consistent, for example. As we learned in class, β̂j is a consistent estimator for βj in OLS for all j
assuming MLR 1-4 hold. Formally speaking, this means that:

lim
n→∞

P (|β̂j − βj | > ε)

For every ε > 0. Sometimes you see this result stated as:

β̂j
p→ β

Or that β̂j converges to β in probability limit.

Similar to unbiasedness, we have a general way of interpreting this result which is less formal.
If β̂j converges to βj in probability limit, then as we increase n for a given realization of data, the
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observed value of β̂j becomes closer and closer to the true value such that the probability of seeing

a realization of β̂j that is not arbitrarily close to βj becomes vanishingly small in OLS. Keep in

mind - we are not saying that the exact value of β̂j becomes close to βj as there is always sampling

variation that might pull us away, but the probability of seeing data that pulls β̂j away from βj
becomes smaller and smaller as the sample size increases.

Let’s return to our previous data generating process:

y = 2x+ 1 + ε

Where ε ∼ N(0, 1) and x ∼ N(0, 1).

And think about again estimating:

y = β1x+ β0 + ε

Since conditional mean independence holds by the way we have constructed this data, we know
that β̂j in OLS is consistent for βj for all coefficients j. Previously, we approximated unbiasedness

by looking at the behavior of β̂1 across repeated samples from the same distribution. Here, to look
at consistency, we look at the behavior of β̂1 across a single realization of the data as we increase
n. Figure 5 demonstrates what happens as we steadily increase the number of observations in a
single dataset. As we can see, the observed value of β̂1 comes closer and closer to the true value of
β1. There is obvious variability in β̂, but as n increases, the probability of seeing a realization of
β̂1 outside of a narrow bound around 2 becomes smaller and smaller.

Figure 5: Consistency of β̂1 for β1
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Now, let’s look at the estimators that we said were biased before. First, we look at the standard
error of β̂1, an estimate of the standard deviation that we found was upwardly biased. As we see in
Figure 6, the standard error jumps around the standard deviation some until settling at values that
seem very close to the true standard deviation of β̂1. Again, the probability of seeing realizations of
the data such that the standard error is far away from the true standard deviation becomes smaller
and smaller as the sample size increases.

Figure 6: Consistency of Standard Error for Standard Deviation of β̂1
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Now let’s consider our biased estimator of β1, β̂1 + 1√
n

. As n increases, we know that β̂1 is

consistent for β1 in OLS, but it should also be apparent that 1√
n

goes to 0 as n increases, as for

every ε we can choose an n such that P (| 1√
n
− 0| > ε) = 0. Hence, 1√

n
converges in probability

to 0. Note that from the properties of consistent estimators, the sum of two consistent estimators
adds up to their probability limits. Therefore, β̂1 + 1√

n
is consistent for β1 + 0 = β1. We can see

this by looking at a similar graph of the observed value of β̂1 + 1√
n

as n increases. As is apparent

in Figure 7, β̂1 + 1√
n

starts off with a sizable bias that falls as n increases.
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Figure 7: Consistency of β̂1 + 1√
n

for β1
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