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Regression, Continued

Regression Inference

Having gone over the basics of interpreting regression output, let’s be more specific about regres-
sion inference. First, it’s worth noting that regression inference is a further step with regression
analysis which is, in some senses, dissociable from other useful properties of regression estimation.
Regression fits a model that minimizes the residual sum of squares, and, assuming that the errors
are iid and homoskedastic and as long as E[ε|X] = 0, these estimates β̂ are the best linear unbiased
(BLUE) estimates of the coefficients on the model we are estimating. Remember that ’best’ in
the acronym BLUE refers to the fact that these estimates are efficient, or have the lowest possible
variance among the class of linear estimators, and ’linear estimators’ refers to estimators of our
regression coefficients β that can be expressed as a linear function of the dependent variable y. Even
if error terms are not homoskedastic, it’s still true that our regression estimates will be unbiased
and consistent estimators of the true value of β as long as E[εi|X] = 0. However, just because an
estimator of β is unbiased and consistent doesn’t mean that the coefficients we observe with our
given data, β̂, are ’close’ to the true values of β. Unbiasedness implies that if we had repeated
draws of data that we would, on average, get the ’true’ values of β, and consistency implies that
as we increase the sample size we would approach the ’true’ value of β in probability limit. We
don’t know, however, whether or not we are ’close’ to certain potential values of β for our par-
ticular realization of data without inference. We might be especially worried that the true value
of a coefficient on some variable is in fact 0, but we observe some non-zero coefficient because of
sampling variation in the particular sample at which we are looking.

Regression inference opens up a whole new set of tools that we can use to test hypotheses about
the values on certain coefficients, and construct confidence intervals for various parameters that
provide useful information about what the values of β might be beyond our simple point estimate of
β̂. Wooldridge motivates regression inference by claiming that we have assumed ε ∼ N(0, σ2). We
will relax this assumption later when we learn more about the asymptotic properties of regression
(or, what happens to our estimator as we send the number of observations to infinity) and many
of the basic results we will discuss will continue to hold.
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Let’s return to our regression output example and interpret it further.

Figure 1: Regression Output

                                                                               
        _cons     12779.37   638.8523    20.00   0.000     11526.97    14031.78
VariableName2     .3223284   .0117286    27.48   0.000     .2993356    .3453211
                                                                               
VariableName1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                               

       Total    4.1112e+12     5,515   745457975   Root MSE        =     25608
                                                   Adj R-squared   =    0.1203
    Residual    3.6159e+12     5,514   655770269   R-squared       =    0.1205
       Model    4.9528e+11         1  4.9528e+11   Prob > F        =    0.0000
                                                   F(1, 5514)      =    755.27
      Source         SS           df       MS      Number of obs   =     5,516

. regress VariableName1 VariableName2

We previously discussed what each of the individual components of this table are, now let’s
focus on the table at the bottom describing estimated coefficients on variables. We see that re-
gressing V ariableName1 on V ariableName2 results in an estimated coefficient on V ariableName2
of around 0.3223. This value is our value of β̂1 in estimating the equation V ariableName1 =
β0 + β1V ariableName2. Since we are in a single variate regression with a constant, this estimated
coefficient is:

β̂VariableName2 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2

Next, we see a standard error term of 0.0117. Since we are in a single variable linear regression,
this value will be:

se(β̂VariableName2) =
σ̂2∑n

i=1(xi − x̄)2

Remember that σ̂2 =
∑n

i=1 ûi
2

n−k−1 .

Now, let’s turn to thinking about these results in the context of hypothesis testing. We first
need to specify a null hypothesis and an alternative hypothesis. STATA reports results in this
table under the t and P > |t| columns that come from individually testing for each coefficient the
null hypothesis that the coefficient on the variable is 0, and the alternative hypothesis that the
coefficients on these variables are non-zero. We will look at hypothesis tests regarding the values
on multiple coefficients simultaneously later, but for the time being we will only consider these
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individual null hypotheses about coefficients on variables. Note that specifying the alternative
hypothesis in this way implies a two-sided hypothesis test. Furthermore, remember that, assuming
the errors to be normally distributed, then our test statistic T has the following exact statistical
distribution:

T =
β̂VariableName2 − βTrueVariableName2

se(β̂VariableName2)
∼ tn−k−1

Or, a t distribution with n− k − 1 degrees of freedom. So, to do hypothesis testing, we would
apply our null hypothesis to our test statistic, and calculate the probability of observing an outcome
as large as T or greater assuming the null to be true. If T falls into some predetermined rejection
region given by a certain level of size α (generally set to be 0.05 by convention), we would reject our
null hypothesis at the α level of confidence and report the probability of observing a test statistic
as great as T or greater as the p-value from our hypothesis test.

Let’s apply our step-by-step hypothesis testing procedure and rederive the results that STATA
reports in the regression table above regarding the coefficient on V ariableName2.

1. Define H0.
STATA in the test above implicitly tests H0 : βV ariableName2 = 0.

2. Define H1.
STATA in the test above implicitly tests H1 : βV ariableName2 6= 0.

3. Define α = Probability of Type I Error.
While STATA does not set a level of α, by convention most researchers set α = 0.05.

4. Define the test statistic and test.

STATA applies a t-test, using the fact that T =
β̂VariableName2−βNull

VariableName2

se(β̂VariableName2)
∼ tn−k−1 if the null

hypothesis were true.

5. Define a rejection region given the test.
We are in a two-sided t-test and α has been set as 0.05, and the degrees of freedom are
5516 − 1 − 1 = 5514. We need to find some value of C such that P (|T | ≥ C|H0) = α, or
the value C such that the probability of observing some absolute value of a test statistic |T |
greater than C assuming the null is true is α. To find this value, we type in:

display invttail(5514, .025)

This command reports the value of C such that the probability of observing a random variable
T from the t distribution with 5514 degrees of freedom that is greater than C is .025, that is:
P (T > C) = 0.025. Then, by the symmetry of the t distribution, we can claim that C is the
value such that the probability of observing a random variable T from the t distribution with
5514 degrees of freedom that in absolute value is greater than C is 0.05, or P (|T | > C) = 0.05.
This value of C for this example is 1.9603, a value that is very close to what we would find in
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the normal distribution, 1.9599. The closeness of these two numbers is a reminder that the t
distribution approaches the normal distribution as we increase sample size.

Therefore, our rejection region is:

RR = (−∞,−1.9603) ∪ (1.9603,∞)

6. Calculate and report the test statistic. STATA reports that our test statistic is T =
27.48. We can derive this by hand as follows:

T =
β̂VariableName2 − βNullVariableName2

se(β̂VariableName2)

=
0.322328− 0

0.01172
= 27.48

7. Do inference. STATA does not report conclusions about inference because inference depends
on the size α that we as STATA users assume. Under our choice of α = 0.05, we see that the
test statistic is very far into the rejection region. Therefore, we reject the null hypothesis at
the 0.05 confidence level.

8. Report p-values. The p-value is P (|X| > |T ||H0), or the probability of observing an out-
come as great or greater than the test statistic we observe given that the null is true. Note
here that the p-value is two-sided because we have done a two-sided hypothesis test. STATA
reports this probability under the column titled P>|t|. We see there that the p-value for
this test listed in the table is essentially 0. We could derive this result by hand by typing in:

display 2*ttail(5514, 27.48)

Where the ttail function reports the probability of observing a value at or above 27.48 in
a t distribution with 5514 degrees of freedom, and we multiply it by 2 using the symmetry of
the t-distribution to account for the fact that we want two-sided p-values.

We have covered every piece of output and filled in the hypothesis testing implicit in the
regression table above except for the final columns, which report a 95% confidence interval. 95%
confidence intervals are often reported simultaneously with results from hypothesis testing, but
the 95% confidence interval uses slightly different approach to inference. In classical hypothesis
testing, we test a specific hypothesis about the value of certain coefficients. With 95% confidence
intervals, we observe an outcome from a procedure that doesn’t require a specific null and alternative
hypothesis and provides a general indication of the potential value of the true value of β.

Remember that for the ’true’ value of βVariableName2 our previous test statistic has a t distribution
with 5514 degrees of freedom. Therefore, using the critical values we established earlier such that
the probability of observing a value from this t distribution outside of a certain boundary is 0.05,
we know that:
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P (−1.9603 <
β̂VariableName2 − βVariableName2

se(β̂)
< 1.9603) = 0.95

By rearranging, we have:

0.95 = P (−1.9603 <
β̂VariableName2 − βVariableName2

se(β̂)
< 1.9603)

= P (−1.9603 · se(β̂) < β̂VariableName2 − βVariableName2 < 1.9603 · se(β̂))

= P (β̂VariableName2 − 1.9603 · se(β̂) < βVariableName2 < β̂VariableName2 + 1.9603 · se(β̂))

Therefore, we can expect the ’true’ value βVariableName2 to fall in this interval before we compute
β̂ 95% of the time. After we compute the confidence interval, of course, either the ’true’ value of
βVariableName2 is or isn’t in the interval we’ve computed. Some students get mixed on this point of
interpretation and believe that the probability of the ’true’ βVariableName2 falling in the confidence
interval after we compute β̂ is 95%. It is best to read confidence intervals as the outcome of a
procedure that gives us a rough set of bounds for the ’true’ value of a parameter.

STATA reports that the confidence interval for β̂VariableName2 is (0.2993, 0.3453). We can derive
this finding by hand by using the formula established above:

95 % CI = (β̂VariableName2 − 1.9603 · se(β̂), β̂VariableName2 + 1.9603 · se(β̂))

= (0.322328− 1.9603 · 0.01172, 0.322328 + 1.9603 · 0.01172)

= (0.2993, 0.3453)

Testing Other Null Hypotheses on Regression Coefficient Values

As described previously, STATA’s default regression output reports results from hypothesis testing
on coefficient values assuming default H0 that the value of a coefficient in question is 0 and assumes
a default H1 that the value on a coefficient is not 0. If we want to test other null hypotheses about
coefficient values, then we have all the tools to do it by hand if we’d like to, or we can use the
lincom command. Let’s say that I wanted to test the null hypothesis that the coefficient on
V ariableName2 is 1 with an alternative hypothesis that the coefficient on V ariableName2 is not
1. Then, we would type after the relevant regression:

lincom VariableName2-1

From the regression above, that would give us the following output in figure 2:
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Figure 2: Lincom Output

. 

                                                                              
         (1)    -.6776716   .0117286   -57.78   0.000    -.7006644   -.6546789
                                                                              
VariableNa~1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

 ( 1)  VariableName2 = 1

. lincom VariableName2-1

Note that the standard error is the same as before, but the ’coefficient’ has changed, along with
the test statistic t and the 95% confidence interval. This result makes sense, as all we have done is
change the null hypothesis. Again, let’s apply our step-by-step hypothesis testing procedure and
rederive the results that STATA reports from this particular hypothesis test.

1. Define H0.
We have explicitly stated the null hypothesis H0 : βV ariableName2 = 1.

2. Define H1.
STATA assumes that our alternative hypothesis is H1 : βV ariableName2 6= 1.

3. Define α = Probability of Type I Error.
Again, by convention, we set α = 0.05.

4. Define the test statistic and test.

Just as before, STATA applies a t-test, using the fact that T =
β̂VariableName2−βNull

VariableName2

se(β̂VariableName2)
∼

tn−k−1 if the null hypothesis were true.

5. Define a rejection region given the test.
Again, as previous, we are in a two-sided t-test and α has been set as 0.05, and the degrees
of freedom are 5516 − 1 − 1 = 5514. We need to find some value of C such that P (|T | ≥
C|H0) = α, or the value C such that the probability of observing some absolute value of a
test statistic |T | greater than C assuming the null is true is α. By the same calculation as
previous, the critical value C is 1.9599.

Therefore, our rejection region is:

RR = (−∞,−1.9603) ∪ (1.9603,∞)

6. Calculate and report the test statistic. STATA reports two figures of note. First,
STATA reports a ’coefficient’ of -0.6776. We can derive this number by subtracting off the
observed coefficient on V ariableName2 by 1: 0.322328− 1 = −.6776. Then, STATA reports
a test statistic of -57.78. Again, we can derive this value by hand:
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T =
β̂VariableName2 − βNullVariableName2

se(β̂VariableName2)

=
0.322328− 1

0.01172
= −57.78

7. Do inference. As previous, under our choice of α = 0.05, we see that the test statistic is very
far into the rejection region. Therefore, we reject the null hypothesis at the 0.05 confidence
level.

8. Report p-values. STATA reports this probability under the column titled P>|t|. We see
there that the p-value for this test is essentially 0. We could derive this result by hand by
typing in:

display 2*ttail(5514, 57.78)

Where the ttail function reports the probability of observing a value at or above 57.78 in
a t distribution with 5514 degrees of freedom, and we multiply it by 2 using the symmetry of
the t-distribution to account for the fact that we want two-sided p-values.
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