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Adjusted R2 (Or R
2
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As we discussed in class, R2 is:
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Or:

R
2

=
SST
n−1 −

SSM
n−k

SST
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SSM
n−k
SST
n−1

As you know, R2 always increases with additional covariates, which makes it a bad tool for eval-
uating the descriptiveness of a particular regression model compared to another, especially when

higher order terms are included. This fact motivates R
2
, a measure of descriptiveness that actually

decreases if additional covariates don’t contribute ’enough’ descriptive power to the model (tech-

nically, an additional covariate increases R
2

if and only if the t statistic under the null hypothesis

that the ’true’ value of βk is 0, or β̂k−0

se(β̂k)
is greater than or equal to 1.

Consider the output from a regression of V ariableName1 on V ariableName2 and V ariableName3:

Figure 1: Adjusted R2 in a Regression

                                                                               
        _cons    -10696.45    3846.24    -2.78   0.006    -18243.39   -3149.516
VariableName3      .180467   .0316651     5.70   0.000      .118335     .242599
VariableName2     2151.093   323.8249     6.64   0.000     1515.697    2786.489
                                                                               
VariableName1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                               

       Total    7.8292e+11     1,084   722252292   Root MSE        =     24825
                                                   Adj R-squared   =    0.1467
    Residual    6.6680e+11     1,082   616265056   R-squared       =    0.1483
       Model    1.1612e+11         2  5.8061e+10   Prob > F        =    0.0000
                                                   F(2, 1082)      =     94.21
      Source         SS           df       MS      Number of obs   =     1,085

. regress VariableName1 VariableName2 VariableName3

In the far right table, we see both R2 and Adjusted R squared, which is the same as R
2
. We

can rederive these results using our formulas:
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R2 = 1− SSE

SST

= 1− 6.6680e+ 11

7.8292e+ 11
= 0.1483

R
2

= 1−
SSE
n−k−1
SST
n−1

= 1−
6.6680e+11
1085−2−1
7.8292e+11

1085−1

= 0.1467

Lagrange Multiplier Test in STATA

One last hypothesis test method we covered before is the Lagrange Multiplier Test. Many facets
of the Lagrange Multiplier Test are similar to the F-test that we considered before. First, we have
an ’unrestricted’ model where we haven’t imposed our null hypotheses, and a ’restricted’ model
where we directly impose our null hypothesis. However, the set-up for the Lagrange Multiplier
Test is a little different. To run a Lagrange Multiplier Test, we first estimate our restricted model
where we directly impose our null hypothesis. We then pull residuals from this regression and then
regress the residuals on the full set of covariates from the unrestricted model. Then, under the
null hypothesis that the restrictions in the restricted model are true, then n · R2 from this second
regression should be χ2

q , or have a Chi-squared distribution with q degrees of freedom.

Let’s consider the model below:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + β3V ariableName4 + ε

Suppose we wanted to test the hypothesis that β2 and β3 were 0. Then, using our procedure,
we would test this hypothesis as follows:

1. Define H0.
H0 : β2 = 0 and β3 = 0.

2. Define H1.
H1 : β2 6= 0 or β3 6= 0.

3. Define α = Probability of Type I Error.
As usual, we set α = 0.05.

4. Define the test statistic and test.
We apply an Lagrange Multiplier test using the fact that we apply two restrictions in our
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null hypothesis, then n ·R2 from the regression of the residuals estimated from the restricted
model on all the covariates from the unrestricted model is χ2 with two degrees of freedom.

Then, assuming that our null hypothesis restrictions are true:

T = n ·R2 ∼ χ2
2

5. Define a rejection region given the test.
We are in an Lagrange Multiplier test, which produces a test statistic from a one-sided
distribution and α has been set as 0.05. We need to find some value of C such that
P (T ≥ C|H0) = α, or the value C such that the probability of observing some test statistic
T greater than C assuming the null is true is α. To find this value, we type in:

display invchi2(2, .95)

We find that C = 5.9915

Our rejection region is:

RR = (5.9915,∞)

6. Calculate and report the test statistic. We first estimate the ’restricted’ model, or the
model implied by the null hypothesis and pull out residuals:

Figure 2: First Regression for LM Test

. regress residuals VariableName2 VariableName3 VariableName4

(2,226 missing values generated)
. predict residuals, resid

                                                                               
        _cons     38066.89   820.1431    46.41   0.000     36459.06    39674.71
VariableName2    -2522.997   363.2861    -6.94   0.000    -3235.191   -1810.803
                                                                               
VariableName1        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                               

       Total    3.6362e+12     5,195   699933032   Root MSE        =     26337
                                                   Adj R-squared   =    0.0090
    Residual    3.6027e+12     5,194   693626695   R-squared       =    0.0092
       Model    3.3455e+10         1  3.3455e+10   Prob > F        =    0.0000
                                                   F(1, 5194)      =     48.23
      Source         SS           df       MS      Number of obs   =     5,196

. regress VariableName1 VariableName2 

We then regress the residuals on all covariates from the ’unrestricted model.’

Note that we get an R2 value of 0.127. Multiplying this value by the number of observations,
we get a test statistic T = 654.69.
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Figure 3: Second Regression for LM Test

                                                                               
        _cons    -28229.79   2041.704   -13.83   0.000     -32232.4   -24227.18
VariableName4    -10442.33   696.0757   -15.00   0.000    -11806.93   -9077.724
VariableName3     3058.401   122.7115    24.92   0.000     2817.835    3298.968
VariableName2     527.6777   342.0477     1.54   0.123    -142.8812    1198.237
                                                                               
    residuals        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                               

       Total    3.5809e+12     5,150   695314161   Root MSE        =     24644
                                                   Adj R-squared   =    0.1266
    Residual    3.1258e+12     5,147   607314930   R-squared       =    0.1271
       Model    4.5502e+11         3  1.5167e+11   Prob > F        =    0.0000
                                                   F(3, 5147)      =    249.74
      Source         SS           df       MS      Number of obs   =     5,151

. regress residuals VariableName2 VariableName3 VariableName4

7. Do inference. Under our choice of α = 0.05, we see that the test statistic is very far into
the rejection region. Therefore, we reject the null hypothesis at the 0.05 confidence level.

8. Report p-values. The p-value is P (X > T |H0), or the probability of observing an outcome
as great or greater than the test statistic we observe given that the null is true. Note here
that the p-value is reported under Prob>F. We see there that the p-value for this test listed
in the table is essentially 0. We could derive this result by hand by typing in:

display chi2tail(2, 654.69)

Note that these results are similar to what we would get if we used an F test, as we also get a
p-value of about 0 in that case. For observed test statistics that are closed to the rejection region
boundary, there will in general be slight differences in p-values between the tests even though both
tests are a means of doing inference on coefficient values.

Prediction Using an ’Elegant’ Method

Previously, we predicted values of the dependent variable using the margins command for specific
predictions given certain values of covariates, and using the predict command for observations
in our data. In class, the professor went over an ’elegant’ method of prediction where we subtract
off the values of the covariates at which we predict the expected mean and then run the regression
normally. It’s worth taking a minute to think about how this technique works. The ’true’ model
is:
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V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + ε

Say we wanted to predict the conditional mean of V ariableName1 at V ariableName2 = 3 and
V ariableName3 = 1. Then, adjusting our ’true’ equation, we have:

V ariableName1 = (β0 + 3β1 + β2) + β1(V ariableName2− 3) + β2(V ariableName3− 1) + ε

Assuming MLR1-4 hold, then if we estimate a model of the following form:

V ariableName1 = γ̂0 + γ̂1(V ariableName2− 3) + γ̂2(V ariableName3− 1) + ε

Then γ̂0 will be consistent and unbiased for β0 + 3β1 + β2, which is by construction the value
of E[y|V ariableName2 = 3, V ariableName3 = 1]. Furthermore, the standard error on γ̂0 will be
the standard error on our prediction, which should be nearly identical to the standard error that
we get from the margins command.

Thus, to implement this process, we would simply type in:

generate VariableName2new = VariableName2-3

generate VariableName3new = VariableName3-1

regress VariableName1 VariableName2new VariableName3new

And then look at the coefficient on the constant for both the estimated value (our prediction of
V ariableName1 at the relevant values of the covariates) and the standard error of the prediction.

Standard Errors vs. Forecast Errors

Suppose that the ’true’ model is:

V ariableName1 = β0 + β1V ariableName2 + ε

When estimating Ê[V ariableName1|V ariableName2], the standard errors that we get from
either the previous ’elegant method’ or the margins command are what we have learned are
standard errors for predicted means, that is they are a standard error of the form:
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se(Ê[V ariableName1|V ariableName2...]) =se(ŷ|V ariableName2)

=se(β̂0 + β̂1V ariableName2|V ariableName2)

Professor Smith drew a contrast between these form of standard errors, which are simply a
standard error for a conditional mean, and the ’forecast’ standard errors, which will always be
larger. The standard errors in se(ŷ) come from the difference between β̂ and β. If β̂ = β, then
there would be no standard error for a conditional mean as there would be no variability in the
estimates of β. Now, think about what happens when predicting a particular value of the dependent
variable V ariableName1. Then, since we are predicting V ariableName1, there will always be an
error in our prediction of V ariableName1 since there is error in V ariableName1 that is unexplained
by V ariableName2. Therefore, even if β̂ = β, there will still exist variation in the ’true’ value of
V ariableName1 that will be uncaptured by our estimate. Thus, the forecast error variance will
always be greater than 0.

Now, the true value of V ariableName1 = β0 + β1V ariableName2 + ε. Therefore:

V (Ê[V ariableName1|V ariableName2]− V ariableName1|V ariableName2) =

V (ŷ|V ariableName2) + V (ε|V ariableName2) = V (ŷ|V ariableName2) + σ2

Therefore, if we are considering our estimates as direct predictions for specific individuals and
not as a conditional mean, then the standard deviation of our estimate is:

sd( ̂V ariableName1
forecast

− V ariableName1|V ariableName2) =√
V ( ̂V ariableName1|V ariableName2) + σ2

Hence, the standard error is:

se( ̂V ariableName1
forecast

− V ariableName1|V ariableName2) =√
V̂ ( ̂V ariableName1|V ariableName2) + σ̂2

Thus, we can calculate the standard error for a forecast by squaring the standard error from a
prediction, adding the estimated variance of the error term and taking a square root.

We can calculate standard errors for forecasts for all observations in our data by typing after a
regression:

regress VariableName1
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predict forecaststandarderror, stdf

We can calculate standard errors for the predicted mean for all observations in our data by
typing:

predict forecaststandarderror, stdp

We can calculate standard errors for forecasts at the level of V ariableName2 = 5 by typing:

adjust VariableName2=5, stdf

And we can finally calculate standard errors for the predicted mean for the level of V ariableName2 =
5 by:

adjust VariableName2=5, stdf

Categorical Variables in Models

Floating in the background of our previous discussion on interacted variables is a specific way of
thinking about categorical variables that is more common in economics than in other disciplines.
Consider first a simple dummy variable V ariableName2 that takes on values 1 and 0:

V ariableName1 = β0 + β1V ariableName2 + ε

So, for observations that have V ariableName2 = 0, then V ariableName1 = β0 + ε, and for
observations that have V ariableName2 = 1 then V ariableName1 = β0 + β1 + ε.

Therefore:

β0 =E[V ariableName1|V ariableName2 = 0]

β1 + β0 =E[V ariableName1|V ariableName2 = 1]

β1 =E[V ariableName1|V ariableName2 = 1]− E[V ariableName1|V ariableName2 = 0]

Thus, categorical dummy variables like β1 (if we have not included interaction terms) can be
interpreted as the difference in the expected value of the dependent variable conditional on all other
characteristics being held constant. Let’s say we were looking at earnings as a dependent variable,
and our single dummy variable was a variable for sex. Then, β0 would be the expected value of
earnings among women, and β1 would be the expected value of earnings among men minus the
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expected value of earnings among women. Thus, β̂0 would be the mean of earnings among women
in our survey, and β̂1 would be the mean of earnings for men minus the mean of earnings for women.

Note that even though we wanted to include categories describing sex, we only included a single
dummy variable defining sex instead of two. This feature of setting up these equations is consistent
for any number of categories. If we’re including dummy variables describing categories, we always
exclude one category. So, if we have dummy variables describing race in six categories and if we
want to run a regression where we include dummy variables for these race variables, we would only
include five categories as dummy variables as including the sixth category would make the sum of
all categories collinear with the constant term. The ’omitted category,’ however, is still implicitly
present. As in the case above with only two categories and no other covariates, the constant term
is the expected value of the dependent variable for the omitted category.

Now let’s consider creating variables coding these different categories. Let’s say that we have
a categorical variable V ariable2 that takes on 4 values, and we would like to include include it in
our regression. We could manually go in and construct the dummy variables as follows:

generate Variable2category1=.

generate Variable2category2=.

generate Variable2category3=.

generate Variable2category4=.

replace Variable2category1=1 if Variable2==1

replace Variable2category2=1 if Variable2==2

replace Variable2category3=1 if Variable2==3

replace Variable2category4=1 if Variable2==4

replace Variable2category1=0 if Variable2==2 | Variable2==3 | Variable2==4

replace Variable2category2=0 if Variable2==1 | Variable2==3 | Variable2==4

replace Variable2category3=0 if Variable2==1 | Variable2==2 | Variable2==4

replace Variable2category4=0 if Variable2==1 | Variable2==2 | Variable2==3

A much faster way of generating categorical variables, however, is to use tabulate ... ,
generate(...) We could’ve performed the same operation as above and created the exact same
variable categories if we had just written:

tabulate Variable2, generate(Variable2category)

Then, STATA generates the same variable names as above and creates a dummy variable for
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each category. Then, we could run a regression including these categories by writing:

regress VariableName1 Variable2category2 Variablte2category3 Variable3category4

We’ve written our category variables with numbers after them because we can write the same
regression a little more compactly. We can use a dash between variable names to tell STATA to use
all variables that occur between these variables on either side of the dash. So, since these variables
were created consecutively, we could tell STATA to run the exact same regression using:

regress VariableName1 Variable2category2 - Variable3category4

Note that we have chosen to exclude V ariable2category1. Thus, the coefficient on V ariable2category2
is an estimate of the difference between the expected value of V ariableName1 for individuals that
have V ariableName2 = 2 and the expected value of V ariableName1 for individuals that have
V ariableName2 = 1. As we talked about in class, the base level choice does not change the
final predicted values of the dependent variable for different subgroups, but it does change the
ease of interpretation of coefficients. The coefficients always measure a difference in conditional
expected value of the dependent variable for the group defined by a specific dummy variable with
the expected value of the dependent variable for the omitted category.

Now, we just ran this regression by creating new separate dummy variables. We could have run
the same regression without directly having created the variables by typing the following command,
which estimates the same regression without creating separate variables in the dataset. When
running large regressions, sometimes this shortcut can be faster as it avoids creating a number of
new variables.

regress VariableName1 i.VariableName2, baselevels

Note the inclusion of baselevels tells STATA to specify which level of the categorical vari-
able V ariableName2 is chosen as a base level. We can directly tell STATA to directly choose
V ariableName2 = 2 as a base level by typing:

regress VariableName1 ib2.VariableName2, baselevels

If we wanted to both run the regression and generate dummy variables, we could just add to
this command:

xi: regress VariableName1 i.VariableName2

Inference with Categorical Variables in Models

Consider hypothesis testing in this framework. In the previous regression, we directly specified the
covariates we included, so if we wanted to test whether the coefficient on V ariable2category3 is
different than 0 (which is, by the way, a test of the difference in means of V ariableName1 between
individuals in category 3 and individuals in the omitted category, or category 1) we could type:
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regress VariableName1 Variable2category2 Variablte2category3 Variable2category4

test Variable2category3=0

If we use the shortcuts mentioned before, then we need to refer to variables somewhat differently.
If we mention the separate dummy variables using the i prefix, then we would refer to the categorical
dummy variable that equals 1 for observations where V ariableName2 = 3 as 3.VariableName2,
and hence we would test the hypothesis that the coefficient on this categorical variable is 0 as
follows:

regress VariableName1 ib2.VariableName2, baselevels

test 3.VariableName2=0

If we create the separate dummy variables using the xi prefix, then STATA has created addi-
tional dummy variables that are referenced in the regression output, and we need to refer to them
by the titles used in the regression:

xi: regress VariableName1 i.VariableName2

test IVariableN 3=0

Combining Different Categorical Variables Together

Consider a case where we have one variable V ariableName2 that takes on values of 0 and 1, and an-
other variable V ariableName2 that takes on values of 0 and 1 Note that together these two different
categorical variables define 4 different categories (V ariableName2 = 0 and V ariableName3 = 0
for one category, V ariableName2 = 1 and V ariableName3 = 0 for another category, etc.)

We could create these additional categories long hand by coding up dummy variables for each
of the categories. Continuing with our previous example, we could do this as follows:

generate cat1 = .

generate cat2 = .

generate cat3 = .

generate cat4 = .

replace cat1=1 if VariableName2==0 & VariableName3==0

replace cat2=1 if VariableName2==1 & VariableName3==0

replace cat3=1 if VariableName2==0 & VariableName3==1
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replace cat4=1 if VariableName2==1 & VariableName3==1

replace cat1=0 if (VariableName2==1 & VariableName3==0) | (VariableName2==0
& VariableName3==1) | (VariableName2==1 & VariableName3==1)

replace cat2=0 if (VariableName2==0 & VariableName3==0) | (VariableName2==0
& VariableName3==1) | (VariableName2==1 & VariableName3==1)

replace cat3=0 if (VariableName2==0 & VariableName3==0) | (VariableName2==1
& VariableName3==0) | (VariableName2==1 & VariableName3==1)

replace cat4=0 if (VariableName2==0 & VariableName3==0) | (VariableName2==1
& VariableName3==0) | (VariableName2==0 & VariableName3==1)

Now consider a model of the form:

V ariableName1 = β1 + β2cat2 + β3cat3 + β4cat4 + ε

Then:

β1 =E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

β2 =E[V ariableName1|V ariableName2 == 1&V ariableName3 == 0]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

β3 =E[V ariableName1|V ariableName2 == 0&V ariableName3 == 1]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

β4 =E[V ariableName1|V ariableName2 == 1&V ariableName3 == 1]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

A somewhat faster way of accomplishing the same goal of allowing would be to create interaction
terms:

generate Variable2interact = Variable2 * Variable3

Now consider a model of the form:

V ariableName1 = γ1 + γ2V ariable2 + γ3V ariable3 + γ4V ariable2interact+ ε

Then:

12



γ1 =E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

γ2 =E[V ariableName1|V ariableName2 == 1&V ariableName3 == 0]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

γ3 =E[V ariableName1|V ariableName2 == 0&V ariableName3 == 1]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]

γ4 =E[V ariableName1|V ariableName2 == 1&V ariableName3 == 1]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0]−
(E[V ariableName1|V ariableName2 == 1&V ariableName3 == 0]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0])−
(E[V ariableName1|V ariableName2 == 0&V ariableName3 == 1]−
E[V ariableName1|V ariableName2 == 0&V ariableName3 == 0])

Hence, β1 = γ1, β2 = γ2, β3 = γ3, but γ4 = β4 − β3 − β2.

Although most coefficients are the same, the interaction term has a slightly different interpre-
tation here than the fourth subcategory variable. However, the final conditional mean results are
the same for different subgroups when we estimate these models.

Now, consider generalizing these results. Suppose we have four categories for one variable and
three categories for another variable. If we wanted to estimate a model

Thus, if we have four categories for one variable and three categories for another variable,
then we could either generate category dummy variables for the subcategories or we could create
dummy variables defining the category levels, and then fully interact all the dummy variables across
categories.

Alternatively, instead of directly interacting the dummy variables in STATA, we could ac-
complish the goal by interacting the category variables as follows with an i. prefix, and a ##
interaction term, which creates dummy categories for the categories separately and includes the
individual dummy variables and the interacted dummy variables.

regress VariableName1 i.VariableName2##i.VariableName3

As previously, when using these categorical variable shortcuts, we can directly specify the
omitted category after i.b. So, if we want to specify the subgroup where both V ariableName2 = 3
and V ariableName3 = 1 as the omitted category, and tell STATA to report which category were
chosen using the baselevels suffix:

regress VariableName1 ib3.VariableName2##ib1.VariableName3, baselevels
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Inference with Combining Different Categorical Variables Together

If we use the previous shortcuts for interactions, then we refer to the estimated coefficients in
postestimation hypothesis tests in a way that is similar to our previous method. If we estimate the
following regression:

regress VariableName1 ib1.VariableName2##ib1.VariableName3, baselevels

Then we can test the null hypothesis that the coefficient on the dummy variable for V ariableName2 =
3 is 0 as follows:

test 3.VariableName2=0

We test the null hypothesis that the coefficient on the dummy variable for V ariableName3 = 2
is 0 similarly:

test 2.VariableName3=0

And we finally test the null hypothesis that the coefficient on the dummy variable for the the
interaction of the dummy variables for V ariableName2 = 3 is 0 and V ariableName3 = 2 is 0 as:

test 3.VariableName2#2.VariableName3=0

The xtile Function

Previously, we used the egen command to compute percentiles and specify whether or not obser-
vations had values that were in higher and lower percentiles. Sometimes, we to create variables
specifying percentiles more directly. So, for example, we might want to sort observations into 5
quantiles of V ariableName1 and create a new variable titled V ariablePercentile that records the
relevant quantile. To do this, we could type:

xtile VariablePercentile = VariableName1, nquantiles(10)
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