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Squared Variables

As we discussed in class, sometimes we want to include squared values of variables, either because
the theory seems to suggest that there should be squared values (for example, the Mincer earnings
model directly implies that there should be an experience and experienced squared variable when
modeling wages over the life cycle), or because we think it fits the data better. Including squared
variables is straight forward. First we generate a new variable that is a square of the previous
variable. Let’s say we’re thinking about a regression of VariableName1 on VariableName2
and VariableName3 , and we’d like to include a square of VariableName2

generate VariableName2sq = VariableName2ˆ2

regress VariableName1 VariableName2 VariableName2sq VariableName3

Note that even though V ariableName2sq is a function of V ariableName2, V ariableName2sq
is not perfectly collinear with V ariableName2 as it is not a linear function of V ariableName2.

Testing Squared Variables

If we wanted to test whether or not the relationship between a dependent variable and the in-
dependent variable should include a higher order term like a square, then we can simply include
these higher order terms and test whether or not the coefficients on these variables is statistically
distinguishable from 0. If we had estimated the previous model, then we could test this by simply
typing:

test (VariableName2sq=0)

If we aren’t sure whether or not V ariableName2 belongs in the regression at all, we could test
the joint significance of the linear and quadratic terms as follows:

test (VariableName2=0) (VariableName2sq=0)
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We previously covered these F-tests in a different section.

Marginal Effects with Squares

Now, let’s consider the marginal effects of a change in V ariableName2 on V ariableName1. Con-
sider first what will happen if the ’true’ model is:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + ε

Note that for any value of V ariableName2, the marginal effect of V ariableName2 on V ariableName1
is: β1, as:

∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=c2,V ariableName3=c3

= β1

for all values of V ariableName2 and V ariableName3. That is, our model has V ariableName2
have a constant marginal effect on V ariableName2.

What happens if we include a square? Then our true model looks like:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName2sq + β3V ariableName3 + ε

And the marginal effect of V ariableName2 on V ariableName1 is now:

∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=c2,V ariableName3=c3

= β1 + β2c1

Unlike previously, the value of V ariableName2 impacts the partial effect of V ariableName2.

Now, let’s think about marginal effects in STATA. Previously, we used the margins command
to look at predicted values of the dependent variable, ŷ. Now, we will use the margins command
to look at marginal effects of different covariates on the dependent variable.

Let’s say we returned to our original regression without squares of covariates:

regress VariableName1 VariableName2 VariableName3
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Then we could compute the marginal effects of V ariableName2 on V ariableName1 at specific
values of V ariableName2 and V ariableName3 as follows:

margins, dydx(VariableName2) at(VariableName2=2 VariableName3=10)

In the language of the equations presented above, this command will estimate and give standard
errors for:

̂∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=2,V ariableName3=10

= β̂1

Since the model we estimated forces marginal effects to be constant across all values of V ariableName2
and V ariableName3, it doesn’t matter in this case what values at which we specify the marginal
effects to be evaluated. The results that we get typing in this command in terms of estimated
marginal effects are the same as those we would see from the standard regression output table in
STATA.

Now, let’s add the squared term to our estimated regression. We could estimate this regression
as we did previously:

regress VariableName1 VariableName2 VariableName2sq VariableName3

This regression returns the proper estimates of coefficients and all relevant information for
hypothesis testing. However, note that if we tried to use the margins command to look at marginal
effects, STATA would not know that we had made V ariableName2sq by squaring V ariableName2,
and hence would only compute marginal effects by looking at movement in V ariableName2 alone.
While estimating the regression this way returns us the right coefficients, if we want to look at
marginal effects then we need to tell STATA that we are creating a variable that is the square of
a previous. The following command estimates the same relationship as the regression above, but
tells STATA that there is a variable that is a direct square of another variable included:

regress VariableName1 VariableName2 c.VariableName2#c.VariableName2
VariableName3

Then we could compute the marginal effects of V ariableName2 on V ariableName1 at specific
values of V ariableName2 and V ariableName3 using the same command:

margins, dydx(VariableName2) at(VariableName2=2 VariableName3=10)

Once again, in the language of the equations above, this command estimates:

̂∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=2,V ariableName3=10

= β̂1 + β̂2 · 2
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Note that, unlike previously, our choice of the value of V ariableName2 that we evaluate at
matters for our marginal effect here.

Interacted Variables

The same techniques apply to looking at interaction terms. Let’s say that we’re considering esti-
mating the following model:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + ε

If we believed that there might exist some interaction between V ariableName2 and V ariableName3,
we would then estimate the model:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + β3V ariableName2 · V ariableName3 + ε

Note that the model without interaction terms as a basis precedes the model with interac-
tion terms. We could estimate this model by producing an additional variable where we interact
V ariableName2 and V ariableName3:

generate InteractTerm=VariableName2*VariableName3

regress VariableName1 VariableName2 VariableName3 interactTerm

Interpreting what happens with square variables can be a bit tricky. Again, remember that
we want the model without interactions to precede the model with interactions. Let’s say our
underlying model was:

V ariableName1 = β0 + β1V ariableName2 + β2V ariableName3 + β3V ariableName3
2 + ε

Then, if we believed that there might exist interactions between V ariableName2 and V ariableName3,
then we would estimate the following model:

V ariableName1 =β0 + β1V ariableName2 + β2V ariableName3 + β3V ariableName3
2+

β4V ariableName3 · V ariableName2 + β5V ariableName3
2 · V ariableName2 + ε

Note that we have interacted all terms involving V ariableName3 with all terms involving
V ariableName2 from our original model. We could estimate this model by producing the additional
interaction variables that we need:
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generate VariableName3sq=VariableName32̂

generate InteractTerm=VariableName3*VariableName2

generate InteractTermsq=VariableName3sq*VariableName2

regress VariableName1 VariableName2 VariableName3 VariableName3sq InteractTerm
InteractTermsq

Testing Interactions

If we think two variables interact, then we can test whether or not a differential relationship with the
dependent variable exists across observations by including the interacted term and testing whether
or not the interacted term is significant. In the previous model without squares we estimated, we
would do this by typing:

test (InteractTerm=0)

If, on the other hand, we had included squared terms that we had interacted, then if we were
testing whether or not there is an interaction we would need to test whether or not the variables
are jointly significant. So, in the model with squares, we would do this by typing:

test (InteractTerm=0) (InteractTermsq=0)

Marginal Effects with Interacted Terms

Consider the marginal effect of a change in V ariableName2 in the model with an interacted term
we described at the beginning of the section:

∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=c2,V ariableName3=c3

= β1 + β3c3

As previously, we could use the estimates we had before to estimate this partial effect, but if
we wanted to use the margins command, STATA would not know that one of our variables was
producing by interacting two other variables. So, if we wanted to estimate the model in a way that
allows us to calculate marginal effects, we would type:

regress VariableName1 VariableName2 VariableName3
c.VariableName2#c.VariableName3

margins, dydx(VariableName2) at(VariableName2=2 VariableName3=10)

This command estimates:

5



̂∂E[V ariableName1|X]

∂V ariableName2

∣∣∣
V ariableName2=2,V ariableName3=10

= β̂1 + β̂3 · 10
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