Fcon 452 Section b - STATA

Connor Cole

October 18, 2015

Using STATA as a Calculator

If you would like to use STATA as a calculator for scalars, you can use the display command.
Just prefix some calculation you would like to run using the display command:

display 3%4 / .5

Regression, Continued

Post-Estimation Regression Predictions

After running a regression, you can create an additional variable for each observation recording
either g, or the predicted value of the dependent variable for a given individual, or e = y — g, the
unexplained residual between the predicted value of the dependent variable and the observed value.

To predict g for each observation and save it in an additional variable, we type:

predict NewVariableName, xb

To predict ¢ = y — ¢ for each observation and save it in an additional variable, we type:

predict NewVariableName, resid

Note that these command must follow immediately from a regression.

Post-Estimation Regression Predictions at a Given Point

The previous method will create predictions for observations in the dataset. However, sometimes,
we might want to use the output from a regression to predict the dependent variable for a specific

set of covariates, and we might be interested in the standard error associated with this prediction
from the standard errors in our estimation of the coefficients of the regression. Let’s say that we’ve
run a single variate regression:

regress VariableNamel VariableName?2

If we wanted to predict the value of VariableNamel when VariableName?2 equals 10, we
would type:

margins, at (VariableName2=10)

Consider the image below offering output from running this margins command:

Figure 1: Margins
. margins, at(VariableName2=190)

Adjusted predictions Number of obs = 6,828
Model VCE : OLS

Expression : Linear prediction, predict()

at : VariableNa~2 = 10

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Intervall

_cons 1.374218 .0211147 65.08 0.000 1.332826 1.415609

Similar to the STATA output we have seen before, the first few lines of this output just reiterates
the command we have given STATA, including the value of the variables we assumed for out
predictions. Underneath this line is a table stating the predicted value of the dependent variable,
its associated standard error (reflecting the fact that the coefficients of the model we are using for
our prediction have been estimated and each have their own standard error), and a t-test for the
predicted value being different than 0, and a 95% confidence interval.

The at command we have used is quite flexible and allows us to estimate predicted values
conditional on statistics of our covariates. If we wanted to predict the value of VariableNamel
at the 75th percentile of VariableName2, we would type:

margins, at ((p75) VariableName2)

If we wanted to predict the value of VariableNamel at the mean of VariableName2, we
would type:

margins, at ((mean) VariableName2)

Note that if we run a multivariate regression, we can proceed similarly by writing:
regress VariableNamel VariableName2 VariableName3 VariableName4

margins, at ((p75) VariableName2 VariableName3=2 (mean) VariableName4)

An Aside on Stored Values in STATA

NOTE: This section is completely optional and only present here because it provides
tools that are in general useful for STATA programming. While these commands
covered in this section might help with problem sets, they aren’t necessary, and are
simply described here for those who might be interested and for future reference.

Whenever STATA reports output from some command, such as summarize or regress, the
output is stored in scalars and matricies, along with additional outcomes not directly reported in
STATA. For example, when we use the regress command, STATA directly reports standard errors
for estimated regression coefficients, and does not report covariances between regression coefficients.
However, those covariances are stored by STATA after it estimates the regression. Sometimes you
may want to report these values or compute functions of them.

There are two different ’classes’ of commands in STATA and, correspondingly, two different
ways STATA saves data after running a command. Commands like the summarize or margins
command are seen by STATA as commands that ’report’ certain values (technically, an r-class
command) while commands like the regress command are seen as commands that ’estimate’
values (technically, an e-class command). On a practical level, this means that calling the results
from the summarize and margins command can be slightly different than calling results from
the regress command.

You can access r-class and e-class returns specifically by typing return list and ereturn
1list respectively. For example, if we wanted to see these returns after using the regress com-
mand, we would type:

regress VariableNamel VariableName?2
return list
ereturn list

Note that STATA saves information in three ways: as scalars, as matricies and as 'macros.’
Scalars are simply numbers, and STATA directly reports the value of a scalar when we use the
previous commands to display what values are saved by STATA. Matricies are too large to directly
report, so when we type the commands above we just see the dimensions of the matrix, where the
first number reports the number of rows and the second number reports the number of columns.
Lastly, macros are text strings that report features of the command, such as the estimation process
used and the variables considered.

As there are three different types of output saved after commands, there are three different
ways of saving this information after we run a command. We're generally interested in saving this
information in separate objects because each time we run these commands these individual objects
are replaced with the new values from the new command, and saving them separately is the only
way to ensure that individual output from previous estimation commands can be accessed later.
Note that these methods save objects that are not variables that would appear if looked at the data
with the browse command.

Saving Scalars

Let’s say we ran the regression regress VariableNamel VariableName?2 and consider the
scalars from these saved results. From the ereturn 1list command, we see that STATA has
saved R? as scalar e (r2). We can see the value of R? stored as a scalar by typing:

disp e(r2)

We can furthermore save this value in a new scalar and access it later by typing scalar to
clarify that we would like to save a scalar, the name of the scalar we would like to create, and lastly
the output from the regression we would like to save. In this case, we would type:

scalar rsquared = e(r2)

Then we can access this value by typing:

scalar list rsquared

We can calculate functions of this value, for example multiplying this value by 2, by typing:

disp rsquared=2

Saving Macros as Text Strings

Now, consider the macros saved by a regression. Running a regression saves a macro saying that
we have run a linear regression under the e (title macro. We can see this macro by typing:

disp "‘e(title)’ "™

We can save this macro as a text string and access it later by typing local to clarify that we
would like to save a string of information locally, the name of the string we would like to create,
and lastly the macro from the regression we would like to save. In this case, we would type:

local method = "‘e(title)’"

We can then access this string and display it by typing:

disp " ‘method’"

Saving Matricies

Lastly, consider the matricies saved by a regression. From the ereturn 1list command, we see
that regressions save a variance-covariance matrix of the estimated coefficients in our regression
under the matrix e (V). We can display this matrix by typing:

matrix list e (V)

We can save this matrix and access it later by typing matrix to clarify that we would like
to save a matrix, the name of the matrix we would like to create, and lastly the matrix from the
regression we would like to save. In this case, we would type:

matrix variancecovariance = e (V)
We can then access this matrix and see it by typing:
matrix list variancecovariance

If we wanted to access specific entries in the matrix, for example the cross correlation between
the two different estimated parameters stored in the first row and second column of the matrix
above, we would save the new object as a scalar and see it by typing:

scalar covariance = variancecovariance[l, 2]

Then, with this additional covariance scalar, we could do the same operations we’ve consid-
ered before for scalars.

Creating New Variables with Scalars and Macros

As noted before, all of these objects are saved in ways that wouldn’t appear in the dataset if we
typed browse. Sometimes, we may want to save these objects as variables so that we can use the
variable manipulation techniques we have already learned. For example, we might want to multiply
some variable in our dataset by the R? value from a regression output, or we might want to create
a string variable reporting the estimation process we have used.

We can directly create variables using the output from our regression by just using the e and
r-class returns in a statement. For example, if we had run the regression described previously, and
we wanted to create a new variable with a value for each observation reporting the value of some
scalar output from the regression, say the R?, we would type generate, the name of the new
variable we would like to create, and lastly the name of the scalar we want to use. In this case, we
would type:

generate rsquaredvar = e(r2)

If we had saved this variable as a scalar titled rsquared, we could also accomplish this goal
by typing:

generate rsquaredvar = rsquared

If we want to save a new variable that records for each observation in the dataset the text string
in some macro, say the fact that the estimation we have run in this case is a linear regression, we
would type generate, then the name of the new variable we would like to create, and lastly the
macro we would like to use. In this case, we would type:

generate estimationprocess = "‘e(title)’"

Again, as in the scalar case, if we had saved this macro as a local string titled method, we
could accomplish this goal by typing:

generate estimationprocess = " ‘method’"

