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An Aside on Asymptotics

NOTE: This material is meant to elaborate on what was discussed in class and is
completely optional.

Previously, we began talking about regression inference by claiming that we assume ε ∼
N(0, σ2). As we have learned this week, our basic tools of statistical inference still work with-
out normally distributed errors as long as MLR1-5 hold and we let the sample size go to infinity.
Technically speaking, we refer to these kinds of results as regression asymtotics. While the prospect
of sending a sample size to infinity may seem unrealistic, in practice it takes a surprisingly small
sample size for asymptotics to work in a relatively believable fashion.

Before seeing some evidence of how asymptotics work, let’s review what theory says about the
asymptotic behavior of regression. We already know that β̂j is consistent in OLS under MLR 1-4,
or that it converges in probability to the true value of βj for all j. Hence, informally speaking, we

can say that β̂j by itself ’collapses’ into a single point at the true value of βj as we let the sample
size go to infinity. However, to do regression inference, we want to preserve some information
about the distribution of β̂j without letting that distribution collapse into a single point. So, we

generally look at test statistics of the form
β̂j−βj
sd(β̂j)

or
β̂j−βj
se(β̂j)

. As we will see, these test statistics do

not collapse on a single point and instead converge to smooth distributions that make regression
inference possible.

Now, as we know from class, if we assume errors are iid from some distribution, homoskedastic,
and E[ε|X] = 0, then the test statistic we’ve looked at before where we take the observed coefficient
β̂j from OLS, subtract off the true value of βj and divide by the true standard deviation of β̂j
(without an estimated σ̂2) converges in distribution to a standard normal distribution:1

1We will later in class relax assumptions even further and not require homoskedasticity to make these asymptotic
results work. For now, with the tools we have available, we need to assume homoskedasticity.
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β̂j − βj
sd(β̂j)

d→ N(0, 1)

Professor Smith in class described this result as follows:

β̂j − βj
sd(β̂j)

∼ AN(0, 1)

Remember that:

sd(β̂j) =

√
σ2∑n

i=1(xi − x̄)2(1−R2
j )

Where R2
j is the R2 measure from a regression of xj on all other covariates (including a constant).

It is relatively straightforward using the Slutsky Theorem to show that even when σ̂2 is esti-
mated, then:

β̂j − βj
se(β̂j)

∼ AN(0, 1)

Where:

se(β̂j) =

√
σ̂2∑n

i=1(xi − x̄)2(1−R2
j )

Let’s take a minute to talk about what we actually mean when saying something has an asymp-
totic distribution, or that the distribution of some random variable converges in distribution to
some other distribution. Formally speaking, we say that the distribution of some random variable
Tn, denoted by Fn(x), converges in distribution to F (x) if Fn(x) converges in limit at all points x
to F (x).

lim
n→∞

Fn(x) = F (x)
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In the case of the test statistics we considering, convergence in distribution of the test statistics
to a standard normal implies that if we were to look at a single possible value of the test statistic and
consider the probability of seeing that test statistic or some value less as we add more observations
n to our calculation, then that probability would converge to the probability of seeing x or some
value less in a standard normal.

Now, note that since the distribution of the test statistics converges to a known distribution
as n goes to infinity, then assuming that we have ’enough’ n so that we’re ’sufficiently close’ to
the asymptotic distribution of the test statistic, we can use this fact to do hypothesis testing using
the normal distribution. For example, let’s say that I estimate β̂j = 2.05 and my null hypothesis

I would like to test is that βj = 2. Then, let’s say that se(β̂j) = .01 and n = 300. Since n seems
’large enough’ I can assume that, roughly:

β̂j − βj
se(β̂j)

approx∼ N(0, 1)

Hence, under my null hypothesis, the probability of seeing an outcome as extreme as 2.05 or
greater would be:

2 · (1− Φ(
2.05− 2

.01
)) ≈ 0

Hence, my p-value for this null hypothesis is very low, and I would reject the null hypothesis at
the 1% confidence level. It’s worth taking a moment to appreciate how this result differs from our
previous finite sample claims about normal errors. Under the assumption of iid and homoskedastic
normal errors, then:

β̂j − βj
sd(β̂j)

∼ N(0, 1)

β̂j − βj
se(β̂j)

∼ tn−k−1

Note that the distribution of these values is exact in finite samples. In the previous example,
the regression inference logic worked because I assumed that a certain number of observations
meant that the distribution of test statistics would be ’close enough’ to the normal distribution to
make regression inference work. Here, I need make no such assumption, as I know the exact finite
sampling distribution of the test statistics. While it is theoretically possible that we could make
claims about the exact finite sample distribution of test statistics when we look at non-normal
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errors, we do not in general do so because we don’t want to assume we know the distribution of
the error term, and, perhaps more importantly, working out these exact finite sample distributions
is hard.

It can be difficult to appreciate these facts when hearing about them in the abstract as it is
hard to picture the difference between a finite sample result and a result that depends on sample
sizes going to infinity. As previously in the note on unbiasedness and consistency, a good way to
see how an estimator behaves is to run a Monte Carlo simulation where we generate data under
some known generating process and then apply our estimation process to the data. Since we know
how the data was constructed, we know what the true values of various parameters must be. Let’s
look first at a model generated with standard normal errors. Consider data generated from the
following data generating process:

y = 2x+ 1 + ε

Where x ∼ N(0, 1) and ε ∼ N(0, 1). As in the previous note on unbiasedness, by construction,
it must be that E[ε|X] = 0, and the error terms are normally distributed. Let’s estimate this model
by fitting the following model with regression:

y = β1x+ β0 + ε

Since MLR1-6 are met, we know that the regression estimation procedure results in an exact
finite sample distribution of our test statistics in regression of the form:

T =
β̂j − βj
se(β̂j)

∼ tn−2

Thus, our test statistics T for j = 1, 0 have an exact t distribution with n−2 degrees of freedom
since one parameter is estimated and a constant is included in the regression. Figure 1 shows the
distribution of test statistics T generated from datasets with the listed number of observations.
For each category, 5,000 datasets were generated and 5,000 coefficients were estimated to create a
distribution of test statistics. In addition to this distribution of test statistics, the graph below also
shows the density of a t distribution with n − 2 degrees of freedom. As is clear, the distributions
nearly line up precisely at all sample sizes, with only minor variations due to sampling variation in
the datasets we’ve created. This figure is rather striking evidence for the believability of the finite
sample hypothesis testing results we have talked about in class.
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Figure 1: Distribution of Test Statistics under Normal Errors
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Now, let’s consider what happens when we don’t have normal errors. Consider data generated
from the following data generating process:

y = 2x+ 1 + ε

Where ε is an error term that takes on values from N(0, 1) distribution with probability .3 and
takes on values from a Γ(5, 2) distribution with probability .7. The error term will have the density
depicted in Figure 2. As is apparent, the distribution of the error term is bimodal and not shaped
at all like a normal distribution.
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Figure 2: Distribution of Error Term
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Now, consider the model we are estimating here. The error terms are not normal, but by
construction E[ε|X] = 0, and furthermore the variance of the error term does not depend on

X. Hence, MLR 1-5 are met, and the distribution of test statics of the form T =
β̂j−βj
ŝe(βj)

will be

asymptotically standard normal, although we do not know what the finite sample distributional
properties of these test statistics are.

So, let’s estimate the following model using regression as we did before:

y = β1x+ β0 + ε

Figure 3 shows the distribution of test statistics T generated from datasets with the listed
number of observations. For each category, 5,000 datasets were generated and 5,000 coefficients
were estimated to create a distribution of test statistics. As is clear, the distribution of test
statistics seems to change as the number of observations goes up. For a relatively small number
of observations, the distribution of test statistics is not especially close to the normal distribution.
Even at a relatively large number of observations, like 100, the distribution of test statistics is close
to the standard normal but just a little off. However, by 200 observations, the fit seems reasonably
close.

This last observation raises an important question - how many observations are ’enough’ in order
to invoke asymptotic results? In practice, most economists don’t question the use of asymptotics
to justify hypothesis testing when looking at more than a few hundred observations in a regression.
As is apparent here, even with a seemingly large number of results, the fit is not quite precise, as
strictly speaking asymptotic approximations require thinking of sending the sample size to infinity.
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Figure 3: Distribution of Test Statistics under Non-Normal Errors
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